

RosBREED Demonstration Breeding Programs

Jim Luby, Breeding Team Leader, Univ. of Minnesota

Outline of Presentation

- Intro to Demonstration Breeding Programs and Traits for each RosBREED Crop
 - Strawberry
 - Peach
 - Tart Cherry
 - Sweet Cherry
 - Apple
- Reference Germplasm Sets

Tart and Sweet Cherries

- Tart Cherry Amy lezzoni
 - Michigan State University
- Sweet Cherry Nnadozie Oraguzie
 - Washington State University

RosBREED Cherry Phenotyping

- Sweet Cherries for Fresh Market in Pacific Northwest with firmness and a range of colors
- Tart Cherries for Processing in Michigan
 - Fruit size genes to enable leaf spot introgression from wild relative
 - Freestone for better pitting

Strawberry

- Chad Finn USDA-ARS, Corvallis, OR
- Jim Hancock Michigan State University
- Tom Davis University of New Hampshire
- Phil Stewart Driscoll Strawberry Associates

RosBREED Strawberry Phenotyping

- Entire germplasm set evaluated at multiple locations
- Allows for dissection of GxE effects in PBA
- Includes fresh market and processing fruit traits
- Plant architecture and remontancy (rebloom)

Peach

- Ksenija Gasic Clemson University
- Tom Gradziel UC-Davis
- John Clark University of Arkansas
- Dave Byrne Texas A&M University

RosBREED Peach Phenotyping

- Covers southern and western geography of US peach production, range of chilling zones
- Several market types
 - Fresh, Processing
 - Nectarine, acidity/sugar, flesh color, shape
- Disease resistances (bacterial spot, brown rot)

Apple

- Kate Evans Washington State Univ.
- Susan Brown Cornell University
- Jim Luby University of Minnesota

RosBREED Apple Phenotyping

- Primary emphasis on fresh market traits
- Components of Flavor, Texture and Appearance
- Postharvest life and storage disorders

Traits and Standardized Phenotyping Protocols

Identify critical fruit quality traits and other important traits

 Develop standardized phenotyping protocols to enable data pooling across locations/institutions

- Protocols available at <u>www.RosBREED.org</u>
 - "Fruit Evaluation"

Reference Germplasm Sets

Crop Reference Set (CR Set)

Breeding Pedigree Set (BP Set)

Crop Reference Set (CR Set)

- ~480 individuals (cultivars, ancestors, founders, breeding lines, selections, and seedlings) that are fruiting in 2010-2012
- Enable efficient validation and utility assessment of Marker-Locus-Trait associations
- Genotyped genome-wide with SNP markers and phenotyped for fruit quality traits and other highimpact traits.
- Resource for common benefit

Breeding Pedigree Sets (BP Set)

- ~100-300 extra plants for each breeding program that, together with the CR Set, allow full representation of important parents in that program
- Information may remain proprietary with each breeding program; data-sharing improves power

Crop Reference Set Visualizing Structure in a Breeding Program with PediMapTM

Tart Cherry Crop Reference Set:

Visualizing a Breeding Program

Up to 5 generations

- Important ancestors:
 - English Morello
 - Meteor
- Pedigree linkage

Tart Cherry Crop Reference Set:

Visualizing a Breeding Program

39 individuals

Half are selections

4 crosses containing 201 individuals provide representation of important parents

20 Ancestors unavailable

Crop Reference Set Allele Representation

Strategy for Constructing Reference Germplasm Sets

- Pedigree-linked reference germplasm sets represent alleles across the genomes of Important Breeding Parents
- Each relative represents an Important Parent; goal was
 >12.5 representation units (e.g. 25 F₁s) for statistical power
 - Offspring represent alleles of these Parents
 - Other relatives can also represent Parent alleles through shared ancestors (because a proportion of alleles will be Identical By Descent)
- F₁ offspring, full-sibs, and parents provide best genome coverage

Sweet Cherry Crop Reference Set

- Up to 6 generations
- 49 individuals
- 38 cultivars
 - 11 selections
- 18 crosses
 containing 191
 individuals (5 to 24
 per cross)

'Lapins' is an Important Parent

Representation by offspring in CRS

Pedigree diagrams are outputs of Pedimap program

Direct descendants of Lapins each provide 0.5 units allele representation

Representation by other relatives

Representation by other relatives

Total representation of Lapins in the sweet cherry CR Set

Crop Reference Set Integrating Multiple Breeding Programs Apple Peach Strawberry

- Need to integrate 3 breeding programs
- Much overlap of Important Parents among 3 breeding programs
- Maximum 6 generations
- Results in CR Set with much commonality and high pedigree connectedness
- Allows transfer of information among breeding programs

U of MN 35 Important Parents

Wash. State 38 Important Parents

Cornell
18 Important
Parents

All Programs'
72 Important
Parents

Peach Crop Reference Set

- 4 Breeding programs
 - Limited overlap of germplasm between market types
- 118 cultivars and selections
- 373 progeny in 23 crosses
- Up to 11 generations

Peach Crop Reference Set Complete Pedigree

Crop Reference and
Breeding Pedigree Sets
Allele Representation of Important Parents in
Multiple Breeding Programs

Allele Representation of 72 Important Parents in Apple Germplasm Set

CRS +UMN BPS 35 Parents

CRS + Cornell BPS
18 Parents

CRS +WSU BPS 38 Parents

Deficient (<12.5 units)
Adequate (12.5-20 units)
Very good (21-50 units)
Excellent (>50 units)

Strawberry Large Integrated Crop Reference and Breeding Pedigree Set

Strawberry Crop Reference Set

- 26 generations
- Covers several germplasm groups
 - CA, PNW, Eastern US, Europe, Wild
- 209 cultivars and selections
- 78 wild strawberries
 - F. virginiana, F. chiloensis or F. virginiana x chiloensis
- 618 seedlings in 44 crosses
- Results in CRS with much commonality and high pedigree connectedness

Strawberry Crop Reference Set

Acknowledgements

This project is supported by the Specialty Crops Research Initiative of USDA's National Institute of Food and Agriculture

Questions?

