The Rosaceae family of horticultural crops.
Project Overview

Amy Iezzoni
Project Director & Tart Cherry Breeder
www.rosbreed.org

RosBREED
Enabling marker-assisted breeding in Rosaceae
Imagine......

ultra-crisp tasty apples, sweet peaches that do not get mealy, flavorful cherries and strawberries, consistently available from your local grocery store.

These are the kinds of fruits that our RosBREED project can help develop using new genetics and genomics technologies.
Honeycrisp: a breakthrough cultivar

- Honeycrisp apple - introduced 1991 by the Univ of Minn.

- Dramatic attention and U.S. market share this decade.

- An ultra-crisp juicy texture and pleasing flavor

- Required 30 years from crossing to commercialization.
Tree Fruit Breeding

Disadvantages:
- Time consuming (3-20 yrs/generation)
- Large land areas needed for testing
- Field maintenance is expensive (equipment, labor, chemicals)
The power of marker-assisted breeding is to move selection from the field........to the greenhouse.

- Only elite individuals are planted in the field for further evaluation.
- Plus, with genetic information, parents can be chosen based on robust knowledge of what traits they will transmit to their offspring.
RosBREED Mission Statement

We will develop and apply marker-assisted breeding, based on improved knowledge of industry values and consumer preferences, to accelerate and increase the efficiency of rosaceous cultivar release and successful cultivar adoption.

Why now?
Apple, peach & diploid strawberry genome sequences will be available in 2010

Image courtesy of NSF
There are over 250 marker-trait associations known in rosaceous crops and just a handful are being used to inform breeding.

Examples of known marker-trait associations.

- DNA markers for the self-fertility alleles in cherry and almond
- DNA marker for the major ethylene gene influencing apple texture
THE CHASM

Marker-trait associations

MAB routine use

Genomics Research

Breeding Programs

Trait low priority
Different germplasm
Unknown functional alleles
Weak linkage
Unknown genetic action
Unknown environ. effects
Unknown linkage drag
No local genotyping
Not cost efficient
No training in MAB
RosBREED bridges this chasm

Genomics Resources

Genomics Research

Marker assisted breeding

Breeding Programs

Genomics knowledge

More efficient development of new cultivars
BRIDGING THE CHASM

Required lots of:
STAKEHOLDER INVOLVEMENT
IDEAS
PLANNING
IMPACT: Focus on fruit quality: Demand from consumers and processors for premium cultivars.
NATIONAL IMPACT: Breeders working in all major U.S. production areas for apples, peaches, and cherries are RosBREED Co-PDs.

RosBREEDs International Partners.

Plant Research Intl., NL
East Malling Research, UK
INRA - Bordeaux, Avignon & Angers
CRA-FRU Rome

Andres Bello University, Chile
University of the Western Cape, SA
Plant & Food Research, NZ
The Rosaceae family

POME FRUIT

STONE FRUIT

BERRIES (some)

rose
Why should we all work together?

RosBREED is rooted in our vision that the common ancestry of the diverse rosaceous genera can be harnessed to leverage knowledge and resources across commodity boundaries.

Proof of concept:
Red pigmentation in apple and cherry fruit.
The same gene responsible for red color in apple is thought to be responsible for red color in cherry.

Apple
- L9
- MYB1/10
 - Fruit skin & flesh color

Cherry
- G3
- MYB1/10
 - Fruit skin & flesh color

Peach
- G3
- Cs locus
 - (red color around stone)
 - & QTL for flesh bleeding

Strawberry

RosBREED
Enabling marker-assisted breeding in Rosaceae

[Image Source: USDA-ARS]
Why should we all work together?

Common challenges.

1. Heterozygosity
2. Polyploidy (4x and 8x)
3. Long generation time
Pedigrees of apple breeding populations
RosBREED OBJECTIVES

1) Use knowledge of trait values to enhance new cultivar adoption, enlarge market potential, and increase consumption.

2) Establish sustainable infrastructure for marker-assisted breeding (MAB).

3) Integrate breeding and genomics information.

4) Conduct MAB in core breeding programs.

5) Enhance sustainability of cultivar development through stakeholder education.
Project Goals: Extension

• RosBREED demonstration breeders and project associates are being trained to optimize utilization of marker-assisted breeding (MAB) and knowledge of trait values.

• Successful adoption of MAB will be enhanced by cross-communication and cross-disciplinary collaboration with allied scientists.

• Stakeholders will appreciate how the use of genomics information can be harnessed to develop new varieties that meet market needs and consumer preferences.
Trait Impact: Focus on fruit quality

Target trait selection: utilize improved knowledge of industry value & consumer preferences.

Are red fleshed peaches & nectarines high priority breeding targets?
Would this fruit type have value in the marketplace?
What is the economic weight for this fruit color trait?

Photos courtesy of Dr. Byrne (nectarine & peach)
Trait and Market Class Breeding Target Establishment

Use knowledge of trait values & preferences from producers, processors, & consumers to prioritize breeder targets so that new cultivars will be more quickly accepted and have an enhanced commercial and consumer impact.
Pedigree Based Analysis

Pedigree, trait, and genotypic information for six apple seedlings, identifying a marker-trait association for skin blush on apple chromosome 9.
MAB Pipeline Implementation

- Put MAB Pipeline into practice
- Demonstrate MAB with high-impact targets
- Achieve routine MAB by core breeding programs
- Technology transfer to all interested U.S. Rosaceae breeders

→ Routine marker-assisted breeding for U.S. Rosaceae
RosBREED demonstration breeders and project associates are being trained to optimize utilization of marker-assisted breeding (MAB) and knowledge of trait values.

RosBREED Breeding Trainees

Training at a statistical workshop (June 2010)
Evaluation of Extension Impact

Michael Coe

1. Breeders & Allied Scientists (2010: baseline survey and interviews)

2. Producers/Processors, Marketing Groups, Trade Organizations (2010: baseline survey)

3. Graduate Students (baseline survey at beginning of traineeship)
MAB pipeline proof of concept in sweet cherry

Marker-trait validation

Marker-trait associations

Fruit size
Fruit color
Self-compatibility

Allele mining
Parental selection
Cherry Breeding Program

MAB

NRi
Knowledge For Tomorrow's Solutions
How will RosBREED help me breed cherry leaf spot resistant tart cherry cultivars?

<table>
<thead>
<tr>
<th>Susceptible</th>
<th>Resistant</th>
<th>Resistant</th>
<th>Susceptible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RosBREED will generate knowledge of the genetic control of fruit size & enable the use of this information to more efficiently achieve the desired fruit size while retaining the CLS resistance.

Sweet cherry cultivar

12 grams

We are identifying the genetic changes that are responsible for this increase in fruit size.

2 grams

Wild forest cherry
In sweet cherry, 3 linkage group regions have been identified that contain genes that control fruit size.
Marker-Assisted Breeding Outcomes

Four year project outcomes

- Increased gain in fruit quality per breeding cycle due to improved parent selection and improved mean progeny value

Long-term outcomes

- Implementation of MAB by breeding programs
- Increased genetic knowledge flow across taxonomic boundaries in the Rosaceae
- More rapid availability of new cultivars with genetically superior fruit quality
- Improved profitability and sustainability of US rosaceous fruit, nut, and floral crops with increased consumption and enjoyment
RosBREED Advisory Panels

<table>
<thead>
<tr>
<th>Scientific</th>
<th>Industry</th>
<th>Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bert Abbott</td>
<td>Jim Allen</td>
<td>Jessica Goldberger</td>
</tr>
<tr>
<td>Pere Arús</td>
<td>Phil Baugher</td>
<td>Peter Hirst</td>
</tr>
<tr>
<td>Joe Arvai</td>
<td>Henry Bierlink</td>
<td>David Karp</td>
</tr>
<tr>
<td>Fred Bliss</td>
<td>Fred Cook</td>
<td>Mercy Olmstead</td>
</tr>
<tr>
<td>Robin Buell</td>
<td>Chalmers Carr III</td>
<td>Ron Perry</td>
</tr>
<tr>
<td>Lailiang Cheng</td>
<td>Robert Curtis</td>
<td>Clark Seavert</td>
</tr>
<tr>
<td>Sue Gardiner</td>
<td>Bill Dodd</td>
<td>Jamie Sherman</td>
</tr>
<tr>
<td>Carolyn Ross</td>
<td>Chrislyn Particka</td>
<td>Brian Sparks</td>
</tr>
<tr>
<td>Phil Simon</td>
<td>Bruce Grim</td>
<td>Chris Watkins</td>
</tr>
<tr>
<td></td>
<td>Rick Harrison</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Philip Korson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kevin Moffitt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tom Stokes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gary van Sickle</td>
<td></td>
</tr>
</tbody>
</table>
Specialty Crop Research Initiative
RosBREED Co-PDs

MSU
Amy Iezzoni (PD)
Jim Hancock
Dechun Wang
Cho Weebadde

Univ. of Minnesota
Jim Luby
Chengyan Yue

WSU
Cameron Peace
Dorrie Main
Kate Evans
Karina Gallardo
Raymond Jussaume
Vicki McCracken
Nnadozie Oraguzie
Mykel Taylor

Oregon State Univ.
Alexandra Stone

USDA
Nahla Bassil
Gennaro Fazio
Chad Finn

Texas A&M
Dave Byrne

Univ. of Arkansas
John Clark

Univ. of CA-Davis
Tom Gradziel
Carlos Crisostomo

Plant Research Intl, Netherlands
Eric van de Weg
Marco Bink

Cornell
Susan Brown
Kenong Xu

Clemson
Ksenija Gasic
Gregory Reighard

Univ. of New Hamp.
Tom Davis
International Project Participants

Jasper Rees
Dan Sargent
Herman Silva & Lee Meisel
INRA (Bordeaux, Angiers, Avignon)
David Chagné
Ignazio Verde
Acknowledgements

This project is supported by the Specialty Crops Research Initiative of USDA’s National Institute of Food and Agriculture
A special Thank You to

Dr. Cameron Peace

Joan Schneider

Audrey Sebolt