

Development and Preliminary Evaluation of the IStraw90 Axiom® Array in The Cultivated Strawberry (*Fragaria* ×*ananassa*)

> Nahla Bassil, USDA-ARS,NCGR PAG XXII

International Strawberry SNP Consortium

USA

- NCGR, Corvallis
 <u>Nahla Bassil</u>
- Univ. New Hampshire
 <u>Tom Davis</u>, <u>Lise Mahoney</u>, <u>David</u> <u>Wood</u>, Yilong Yang, Hailong Zhang
- Washington State Univ.
 Stephen Ficklin, <u>Sook Jung</u>, <u>Dorrie</u> <u>Main</u>, Cameron Peace
- Michigan State Univ.
 Amy lezzoni, Umesh Rosyara
- Univ of Florida
 Vance Whitaker
- Affymetrix-USA
 Mike Mittmann, <u>Ali Pirani</u>, <u>Teresa</u>
 <u>Webster</u>, <u>LuAnn Glaser</u>, Lu Yan....

Europe

- Wageningen UR, NL
 Eric van de Weg, Thijs van Dijk
- IFAPA- Spain
 <u>Iraida Amaya</u>
- INRA-Bordeaux, France Beatrice Denoyes
- IRTA-Barcelona, Spain
 <u>Amparo Monfort</u>
- IASMA-FEM, Italy
 Dan Sargent
- Affymetrix-UK
 Fiona Brew

Outline of Presentation

- Introduction
- IStraw90 description
- Preliminary evaluation
- Conclusions

Introduction

RosBREED

- RosBREED aims to accelerate and increase the efficiency of rosaceous cultivar release through marker-assisted breeding
- High throughput genotyping tools for QTL discovery:
 SNP arrays (through international collaborations)
- Now finding practical application in breeding programs: e.g., QTLs for resistance to bacterial spot in peach (Yang et al., 2013)

Illumina Infinium® Arrays

Verde et al. 2012

Peace et al. 2012

Chagné et al. 2012

ROSBREED Enabling marker-assisted breeding in Rosaceae

OPEN ORCESS Freely available online

Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm

Ignazio Verde¹*⁹, Nahla Bassil^{2,9}, Simone Scalabrin³, Barbara Gilmore², Cynthia T. Lawley⁴, Ksenija Gasic⁵, Diego Micheletti⁶, Umesh R. Rosyara⁷, Federica Cattonaro³, Elisa Vendramin¹, Dorrie Main⁸, Valeria Aramini¹, Andrea L. Blas⁶, Todd C. Mockler^{9,10}, Douglas W. Bryant^{9,11}, Larry Wilhelm¹², Michela Troggio¹³, Bryon Sosinski¹⁴, Maria José Aranzana⁶, Pere Arús⁶, Amy Iezzoni⁷, Michele Morgante^{3,15}, Cameron Peace⁸*

OPEN OR ACCESS Freely available online

Development and Evaluation of a Genome-Wide 6K SNP Array for Diploid Sweet Cherry and Tetraploid Sour Cherry

Cameron Peace¹*, Nahla Bassil², Dorrie Main¹, Stephen Ficklin¹, Umesh R. Rosyara³, Travis Stegmeir³, Audrey Sebolt³, Barbara Gilmore², Cindy Lawley⁴, Todd C. Mockler⁵, Douglas W. Bryant^{5,6}, Larry Wilhelm⁷, Amy lezzoni³

OPEN 3 ACCESS Freely available online

PLos one

Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

David Chagné¹, Ross N. Crowhurst², Michela Troggio³, Mark W. Davey⁴, Barbara Gilmore⁵, Cindy Lawley⁶, Stijn Vanderzande⁴, Roger P. Hellens², Satish Kumar⁷, Alessandro Cestaro³, Riccardo Velasco³, Dorrie Main⁸, Jasper D. Rees⁹, Amy lezzoni¹⁰, Todd Mockler¹¹, Larry Wilhelm¹², Eric Van de Weg¹³, Susan E. Gardiner¹, Nahla Bassil⁵, Cameron Peace⁸*

Affymetrix Axiom® Strawberry

The Wall Street Journal news department was not involved in the creation of this content.

PRESS RELEASE | October 22, 2013, 6:35 a.m. ET

Affymetrix Axiom(R) Strawberry Genotyping Array Delivers Automated Analysis for High-Resolution Genome Scanning of Octoploid Strawberry

SANTA CLARA, Calif .-- (BUSINESS WIRE)-- October 22, 2013--

Affymetrix, Inc. (NASDAQ:AFFX) announces the launch of Axiom Strawberry Genotyping Array (also called International Strawberry 90K SNP array or IStraw90), the only solution that successfully enables high-resolution genotyping and fully automated data analysis of the octoploid strawberry genome. This 90,000 SNP array will enable complex trait research and set the stage for multi-trait, marker-assisted breeding of the cultivated garden strawberry (Fragaria × ananassa).

AxiomGT1 SNP Cluster Plot

Contrast = Ratio between the two label-colors: log2(A/B)

Genotype Notation: Genotypes of subgenomes are separated by dashes

- Subgenome with the segregating allele is first (red),
- Subgenomes with fixed alleles follow (black)

ROSBREED Enabling marker-assisted breeding in Rosaceae

Approaches for SNP Selection

✤ Focus on high coverage (≥16x) and removal of duplicate reads- 9 SNP Detection Panel

Reduced ploidy markers to address challenges of cluster compression (8x -> 2x-6x)

Enabling marker-assisted breeding in Rosaceae

www.rosbreed.org

Extensive use of bioinformatic tools and in-house scripts for SNP filtering

Large number of SNPs: > 90K (permits
experimentation and reduced conversion rate)

IStraw90® Axiom Array

Strawberry SNP		
Classes	# SNPs	# Probes
Classical SNPs	63,263	86,817
Reduced ploidy	22,401	41,282
del	4,913	5,361
ins	4,615	5,197
SNP in Del	836	932
SNP in Ins	2,007	2,444
Indel-SNP	1,177	1,206
mSNP	1,761	19,050
SNP-SNP	7,092	7,092
Diploid (<i>F. iinumae</i>) \$	SNPs	
F. iinumae SNPs	3,751	4,000
Sequence-		
independent	5,648	6,000
Total	95,063	138,099

SNP-SNP Markers

ROSBREED Enabling marker-assisted breeding in Rosaceae

Preliminary Evaluation

Strawberry Individuals: 384

Strawberry Samples	No.	Classification
1. Diploid	27	
F. iinumae	24	Mapping population
F. vesca	2	Available sequence data
F. mandschurica	1	Available sequence data
2. Octoploid		
F. ×ananassa	306	
	176 (4)	Mapping populations
	2 (4,2)	Technical replicates
	9	SNP detection panel
	49	Pedigree-linked populations-MSU-ORUS
	66	Other
NON E xananassa	51	
	38	Pediaree-linked populations-NH
	2	F chiloensis sequenced
	2	F virginiana sequenced
	9	Reconstituted <i>E xananassa</i> (EVC)

Six SNP Categories

ROSBREED Enabling marker-assisted breeding in Rosaceae

Steps Adopted to Identify 3 Well-Resolved Genotype Clusters

1. Genotype *F.* ×*ananassa* separately from other octoploid species

Steps Adopted to Identify 3 Well-Resolved Genotype Clusters

- 2. Further sub-division of the PolyHighResolution Class
 - Three additional filtering tools modified for strawberry data
- A. ≥ 3 examples of the minor homozygote genotypes
- B. 100% reproducibility among technical replicates
- C. Not more than 3 genotype clusters
 - Select through use of "variance" filters

Excessive Variance of the BB cluster

Excessive Variance of the AB cluster

ROSBREED Enabling marker-assisted breeding in Rosaceae

Steps Adopted to Identify 3 Well-Resolved Genotype Clusters

3. No calls for samples that cluster on margins
 > Increasing stringency for making genotype calls

Effect of Increasing Call Stringency by decreasing the Confidence Score

ROSBREED Enabling marker-assisted breeding in Rosaceae

Genotyping 306 F. ×ananassa Samples

284 samples pass threshold: 97% Genotyping Call (GC)

	SNP Class					
	Snp	Other Reduced Ploidy	SnpSnp	F. iinumae	Seq- ind.	Total
Total # SNPs	63,263	15,309	7,091	3,751	5,648	95,062
PolyHighRes-Start	16,891	2,945	3,101	157	261	23,355
Additional Filters						
- nMinorHom	1,153	311	53	33	61	1,611
- Reproducibility	2,568	385	182	55	73	3,263
- Variance	3,984	839	938	35	76	5,872
PolyHighRes- Filtered	9,186	1,410	1,928	34	51	12,609

ROSBREED Enabling marker-assisted breeding in Rosaceae

Snp-Snp Markers Have the Highest Percent of Conversion [PolyHighResolution (PHR) Class] 30 25 20 15 10 5 0 Snp Other **SnpSnp** Seq-ind. F. iinumae Reduced Ploidy Enabling marker-assisted breeding in Rosaceae www.rosbreed.org

Axiom[®] Genotyping at different levels of allo-ploidy

Simulated Cluster Modeling

Affymetrix developed procedures to easily identify SNPs that perform at the diploid level ➤ Homozygous Ratio Offset (HomRO)

41% of PHR SNPs have diploid clusters

SNP Design & Effective Ploidy Level

87%

- Classical SNP: 29% at diploid level
- Reduced ploidy strategies: effective!
 Majority has diploid-like clusters

Validation of Genotyping Accuracy

Using **inheritance error** and **mapping performance** in four mapping populations

♦ Holiday x Korona HxK n = 79
♦ Tribute x Honeoye TxH n = 22 P1/♂ lacking
♦ Redgauntlet x Hapil RxH n = 38 P1/♀ lacking
♦ Capitola x CF1116 CxCF n = 20

Validation in 'Holiday' x 'Korona'

Start:8,084 polymorphic markersMapped:6,589 (=81%) were mapped giving
all the expected 28 LGs

Validation in 'Holiday' x 'Korona'

IStraw90[®]) SNP linkage map of allo-octoploid strawberry using the Holiday x Korona family (n=79)

1	A 1B 1C 1D 24	A 2B 2C 2D	3A 3B 3C 3D	4A 4B 4C 4D	5A 5B 50	C 5D 6A	6B 6C 6D	7A 7B 7C 7D
0 5 10 15 20 25 30 40 55 60 55 60 55 60 55 60 65 70 55 80 90 9100 105 110 115 120 125 10 10 10 10 10 10 10 10 10 10								
	that are h	omozvaol	us for SSR-	-loci				14-1
	that are nonicity gous for contrict.							

iology for a better wo

AGENINGEN UR For quality of life

10-2013

USDA

Validation in Smaller Mapping Populations

♦ RxH: mapped 1769 SNPs
 > underestimation due to absence of genotype data for ♀ parent
 ♦ TxH: mapped 2852 SNPs
 > underestimation due to absence of genotype data for ♂ parent
 ♦ CxCF: In progress

Next:

- Include the lacking parents
- Scrutinize genotype calls of individual samples
- Increase family sizes

Enabling marker-assisted breeding in Rosaceae

Mapping of Diploid SNPs

Interspecific hybrid, F₁, and F₂ population

A-B

*2928 F1D SNPs successfully map (PAG Poster #437)

✤ 188 SNPs designed for the octoploids map in *F. iinumae*

www.rosbreed.org

34 SNPs designed for *F. iinumae* are in the filtered PolyHighRes. category in the octoploids

Enabling marker-assisted breeding in Rosaceae

SNP Distribution and Polymorphism in Strawberry Germplasm (52)

- LG2
- LG3
- LG4
- LG5

Distribution of SNPs among 7 LGs as illustrated by minor allele frequency according to physical location on the *F. vesca* Hawaii v. 1 reference genome in 52 diverse strawberry accessions

Enabling marker-assisted breeding in Rosaceae

Conclusions

- Commercial availability of the first array for an octoploid organism, IStraw90, provides new opportunities for genetic research in polyploids
- Affymetrix genotyping tools further empowered
- Over 6,000 SNPs mapped in 'Holiday' x 'Korona'
- SNP design can efficiently reduce effective ploidy level, Snp-snp approach being most effective
- Validation of genotype calls across diverse germplasm is in progress

RosBREED was a multi-state, multi-institution project dedicated to genetic improvement of U.S. rosaceous crops by targeted applications of genomics knowledge and tools to accelerate and increase the efficiency of breeding programs. This Coordinated Agricultural Project was funded through the USDA's National Institute of Food and Agriculture - Specialty Crop Research Initiative by a combination of federal and matching funds, Grant 2009-51181-05808. www.rosbreed.org

