KOSBKEED

Enabling marker-assisted breeding in Rosaceae

Marker-assisted breeding enabled by RosBREED

Ksenija Gasic¹, Susan Brown ², David Byrne³, John Clark⁴, Tom Davis⁵, Kate Evans⁶, Chad Finn⁷, Tom Gradziel⁸, Jim Hancock⁹, James Luby¹⁰, Nnadozie Oraguzie¹¹, Nahla Bassil¹², Gennaro Fazio¹³, Dorrie Main¹⁴, Jim McFerson¹⁵, Cameron Peace¹⁴, Eric van de Weg¹⁶, Cholani Weedbadde⁹, Chengyan Yue¹⁰ and Amy Iezzoni ⁹

¹Clemson Uni., Clemson, SC 29634, USA; ²Cornell Univ., NYSAES, Geneva, NY 14456, USA; ³Texas A&M Univ., College Station, TX 77843, USA; ⁴Univ. of Arkansas, Fayetteville, AR 72701, USA; ⁵Univ. of New Hampshire, Durham, NH 03824, USA; ⁶Washington State Univ., Wenatchee, WA 98801, USA; ⁷USDA-ARS, HCRL Corvallis, OR 97330, USA; ⁸Univ. of California - Davis, Davis, CA 95616, USA; ⁹Michigan State Univ., East Lansing, MI 48824, USA; ¹⁰Univ. of Minnesota, St. Paul, MN 55108, USA; ¹¹Washington State Univ., Prosser, WA 99350, USA; ¹²USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA; ¹³USDA-ARS Cornell Univ., Geneva, NY 14456, USA; ¹⁴Washington State Univ., Pullman, WA 99164, USA; ¹⁵Washington Tree Fruit Research Commission, Wenatchee, WA 98801, USA; ¹⁶Plant Research International, 6700AA, Wageningen, Netherlands

Overview

- Significant barriers limit application of marker-assisted breeding (MAB) in horticultural crops.
- Genomics knowledge is being translated into practical MAB tools and integrated into crop improvement programs.
- Breeding programs are receiving training and access to MAB tools to permanently expand capacity.

MAB Pipeline

- An eight-stage MAB Pipeline will exploit genomic homology across commodity boundaries (Fig. 2).
- Pipeline stages begin with economic weighting of available associations; marker-locus-trait continue through development of breeder-friendly genetic markers, crop-wide validation, and utility assessment within breeding program

Figure 2. The Marker-Assisted Breeding Pipeline

Efficient development of superior new cultivars and enhanced industry adoption

- Socio-economic factors affecting cost, benefit, technology adoption, supply chain values, and consumer preferences are being considered.
- **RosBREED** focuses on fruit quality traits directly linked to consumer demand and stakeholder profitability.

Twelve U.S. breeding programs - demonstration breeding programs, serve as initial technology adopters (Fig. 1). Other **Rosaceae breeding programs are active participants (e.g. Crop Reference Set selection)** and beneficiaries of RosBREED deliverables.

germplasm; and will be applied to crossing and seedling selection decisions.

Infrastructure to integrate DNA information into routine breeding operations includes one-on-one training and the of genome-scanned, community resources а comprehensively phenotyped (for fruit quality) reference database on pedigree-linked breeding germplasm.

Pop_SelahxVan

op 7903-2xSumr

Apple for primary emphasis on fresh market **Tart Cherry** for processing • Target traits: flavor, texture, appearance, postharvest life and resistance to storage • Fruit size to enable leaf spot introgression from wild relative disorders • Freestone for better pitting **Peach** for fresh market and canning Sweet Cherry for fresh market • Target traits: flavor, texture, flesh color, size •Target traits: fruit size, firmness and shape, disease resistances (bacterial and exceptional flavor spot, brown rot) EmperorEuger EmperorFrar Napoleo

Strawberry fresh market and processing

Target traits: flavor, color, plant architecture and remontancy (rebloom)

• Up to 6 generations Pop_8007-2xChln Pop_DDxMIM1 49 parents and ancestors Corum Pop_Swthtx8007 – 38 cultivars Eugenie Pop_LapxBrooks – 11 selections GilPeck Pop_LapxTieton • 18 crosses containing 191 Katalin offspring (5 to 24 per cross) Pop_RainxBent op_BingxPMR1 BlackEagle Pop_LapxChel 'Lapins' is an example of an Pop_SwthtxReg KordiaxUN Important Breeding Parent

Figure 3. Sweet Cherry Crop Reference Set, visualized by Pedimap software (www.plantbreeding.wur.nl/UK/software_pedimap.html)

16 * 0.5

14

Lapins represents itself

Direct descendants of Lapins each provide

0.5 units allele representation

Figure 1. RosBREED demonstration breeding programs and evaluation sites

Strategy for Constructing reference Germplasm Sets

The second se

- The Pedigree-Based Analysis approach will functionally characterize alleles at detected QTLs and describe parental breeding value.
- Pedigree-linked reference germplasm sets represent alleles across the genomes of Important Breeding Parents (Fig. 3).
- Each relative represents an Important Breeding Parent; goal was
- >12.5 representation units (e.g. 25 F_1 s) for statistical power
 - Offspring represent alleles of these Parents (Fig. 4)
 - Other relatives can also represent Parent alleles through shared ancestors (because a proportion of alleles will be Identical By Descent)
- F₁ offspring, full-sibs, and parents provide best genome coverage

Figure 4. Representation by offspring in Crop Reference Set

1

1.0

13

21 * 0.5

Traits and Standardized Phenotyping protocols

- Identify critical fruit quality traits and other important traits
- Develop standardized phenotyping protocols to enable data pooling across locations/institutions
- Protocols available at :

www.rosbreed.org/resources/fruit-evaluation

Crop Reference Sets (CR Sets)

- ~480 individuals (cultivars, ancestors, founders, breeding lines,
- selections, and seedlings) that are fruiting in 2010-2012 (Fig. 3)
- Enable efficient validation and utility assessment of marker-locus-

trait associations

• Genotyped genome-wide with SNP markers and phenotyped for fruit

quality traits and other high-impact traits

- $\sim 100-300$ extra plants for each breeding program that, together with the CR Set for that crop, allow full representation of important parents in that program
- Information may remain proprietary with each breeding program; data-sharing improves power

Funding for RosBREED: Enabling marker-assisted breeding in Rosaceae is provided by the Specialty Crop Research Initiative Competitive Grant 2009-51181-05808 of the USDA's National Institute of Food and Agriculture

No. trees

10 * 0.5

10